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• RF accelerating cavities maintain a resonanting E&M 
wave to interact with the particle beam.

• Particles are either accelerated or decelerated 
depending on their arrival time.

• The particle phase is focused by the potential, which 
is identical in form to a simple gravity pendulum.

Basic Longitudinal Focusing



Phase-Space for a single RF

• Phase-space plot for a single RF cavity:



Phase-space for Slip-stacking RF

• Two RF cavities at near but different frequencies.
• Phase-plot for slip-stacking:



Slip Stacking at Fermilab

• Slip-stacking allows us to accumulate twice as many 
particles and double the MI proton intensity.

• Fermilab has implemented slip-stacking since 2004.
• Fermilab is the only accelerator complex to use slip-

stacking operationally.



Recycler-MI Slip-Stacking Cycle



Dynamic Stability of Slip-stacking

• Its not as simple as this.
– The second RF frequency interferes with the first 

RF frequency.
– Finding the phase-space boundary of stable slip-

stacking is a nonlinear time-dependent problem.



Numerical Result for Stable Area

Initial phase (radians)

δ=Δp/p
(from center)

Stability of Initial Positions (RF phase difference 0 )
 



What do the buckets look like?

Initial phase (radians)

δ=Δp/p
(from center)

Stability of Initial Positions (RF phase difference 0 )
 



Phase-Space path (naïve center)



Parametric Resonances



RFs and Pendulums

A single RF cavity is isomorphic to
a simple gravity pendulum



RFs and Pendulums

Two RF cavities (slip-stacking)
is isomorphic to
a driven pendulum



RFs and Pendulums

Three RF cavities
is isomorphic to
a driven pendulum with gravity



Application to Standing Wave Traps
 Standing wave traps are a sinesoidal potential
 Optical lattices used in AMO physics.
 Acoustic levitation techniques for fabrication.
 Two standing wave traps moving with respect to each 
other make a slip-stacking potential:

– Trap-Accumulation
– Controlled Collisions



Thank you for listening!

...Any Questions?



Backup Slides



• A “batch” is injected from 
the Booster into 1/7 of 
the Recycler.



• The first batch is stored 
in the Recycler while the 
second batch is 
prepared in the Booster.



• The timing works out so 
that the second batch is 
injected immediately 
behind the first.

• Called “Boxcar 
Stacking”.



• Now two batches are 
stored...



• And a third batch is 
injected…



• This process repeats 
until 6/7 of the Recycler 
is filled.



• The RF cavity is 
gradually lowered in 
frequency so that these 
6 batches are now in a 
lower momentum orbit.



• Another batch can be 
injected in that 1/7 gap 
without kicking out any 
beam.



• The batches slip past 
each other and can 
occupy the same 
azimuthal space.

• Because the shifted 
batch is slower, the gap 
lines up again for the 
next injection.



• The eight batch is 
injected immediately 
behind the seventh 
batch without kicking out 
the first six.



• Those batches can be 
stored and slipped as 
well.

`



• And the ninth injection 
can proceed smoothly.



• The process continues 
until there are a total of 
twelve batches, six in 
each momentum orbit.



• All batches are ejected 
to the Main Injector.

• The Recycler can begin 
to fill again while the MI 
ramps.

• The extra 1/7 azimuthal 
space is used for the 
kicker.



Booster Cycle Rate determines 
Slipping Rate
• The two momentum orbits must slip one batch (84 

buckets) in time for each booster injection (15 Hz).
• Phase-slipping frequency 84*15 Hz = 1260 Hz.
• 20 Hz Booster would mean 1680 Hz.



Forces from RF Cavities



Single Bucket Synchrotron Motion
(still no slip stacking yet)

• Particles are accelerated/decelerated 
based on their phase relative to the 
RF-cavity.

• Particles can be classified as either 
in the bucket or not in the bucket.

• In the bucket:
• Average phase and momentum is the 

synchronous point.
• Above/below the bucket:

• The average particle momentum is not 
synchronous.

• The particle phase is unbounded.



Independent Buckets 
Approximation
• In this approximation:

• The string of separatrices 
slip past each other without 
affecting the other.

• Each particle only sees the 
nearest RF cavity.

• The justification is that 
the force from the other 
RF cavity averages out.



Bucket Oscillation & Deformation
• Each bucket oscillates as it 

slips pasts the other.
• Each bucket’s shape has a 

time dependent 
deformation.

D. Boussard & Y. Mizumachi



Trajectories in a
Slip-stacking Bucket



Phase-Space path (quasi-synchronous)



• The slip-stacking parameter is defined by:

• All non-trivial dynamics of slip-stacking are contained 
in this parameter.

• Two slip-stacking system with a different combination 
of parameters (η,E,h,ω

rev
,V, etc.) but the same slip-

stacking parameter α
s,
 are related by a rescaling.

– an isomorphism

Slip-stacking Parameter

Phase-slipping frequency

Synchrotron frequency



• Start with the slip-stacking single-particle mapping, 
from within the top RF bucket:

• The Hamiltonian is explicitly time-dependent:

• Expressing this as a single 2nd order diff. eq.:

• Expression for small oscillations:

• And obtain perturbative solutions for the motion:

The bucket center oscillation



• Start with the slip-stacking single-particle mapping, 
from within the top RF bucket:

• The Hamiltonian is explicitly time-dependent:

• Expressing this as a single 2nd order diff. eq.:

• Expression for small oscillations:

• And obtain perturbative solutions for the motion:

The bucket center oscillation

• Motion of the bucket center
• Not dependent on initial position
• Multiples of ω

p



• Start with the slip-stacking single-particle mapping, 
from within the top RF bucket:

• The Hamiltonian is explicitly time-dependent:

• Expressing this as a single 2nd order diff. eq.:

• Expression for small oscillations:

• And obtain perturbative solutions for the motion:

The bucket center oscillation

• Synchrotron motion
• ρ and ψ from initial position
• Multiples of ω

s



• Interaction motion
• Depends on initial position
• Linear combination of ω

p
 and ω

s

• Start with the slip-stacking single-particle mapping, 
from within the top RF bucket:

• The Hamiltonian is explicitly time-dependent:

• Expressing this as a single 2nd order diff. eq.:

• Expression for small oscillations:

• And obtain perturbative solutions for the motion:

The bucket center oscillation



• Synchrotron frequency shift 
induced by slip-stacking.

• Start with the slip-stacking single-particle mapping, 
from within the top RF bucket:

• The Hamiltonian is explicitly time-dependent:

• Expressing this as a single 2nd order diff. eq.:

• Expression for small oscillations:

• And obtain perturbative solutions for the motion:

The bucket center oscillation



Slip-stacking Bucket Area



• Exact turn-by-turn mapping computed using Microsoft 
Excel or Matlab.

• Every particle trajectory handled independently.
• No beamloading, space-charge, or intrabeam effects.

Simulation



What do the buckets look like?

Initial phase (radians)

δ=Δp/p
(from center)

Stability of Initial Positions (RF phase difference π/2 )
 



What do the buckets look like?

Initial phase (radians)

δ=Δp/p
(from center)

Stability of Initial Positions (RF phase difference π )
 



What do the buckets look like?

Initial phase (radians)

Stability of Initial Positions (RF phase difference 3π/2 )
 

δ=Δp/p
(from center)



Metastable losses



Slip-stacking Area Factor



Modified Area Factor



Emittance



Slip-stacking Parameter



Voltage



Momentum Usage



Connection to other
subfields of physics



Physical Analogy to Driven 
Pendulum:
• The slip-stacking Hamiltonian is equivalent to a 

sinusoidally driven pendulum, confined to a 2D plane, 
in the absence of gravity & friction:

• “1½” Degree of Freedom – momentum, phase, time

H.W. Broer,
I. Hoveijn,
M. van Noort, 
C. Simo, and 
G. Vegter
(2004) 



Stability & Stroboscope Overlay



Physical Analogy to Driven 
Pendulum:
• The slip-stacking Hamiltonian is equivalent to a 

sinusoidally driven pendulum, confined to a 2D plane, 
in the absence of gravity & friction:

• “1½” Degree of Freedom – momentum, phase, time

• They usually include a gravity term to their driven 
pendulum, which would represent a 3rd cavity

• Their “rotating solutions” are our buckets.



Application to Standing Wave Traps
 Two counterpropagating waves make a standing 
wave pattern.
 Particles attracted to the nodes or anti-nodes of the 
standing waves are trapped in a sinesoidal potential.
 Optical lattices used in AMO physics.
 Acoustic levitation techniques for fabrication.
 A standing wave traps can move:
 Two standing wave traps moving with respect to each 
other make a slip-stacking potential:

– Trap-Accumulation
– Controlled Collisions



Open Areas of Research



Experimental Verification
Ming-jen Yang and Phil Adamson helped me access and 
understand the Recycler Restive Wall Monitor oscilloscope.

 Measure the synchrotron oscillation during slip-stacking.



Experimental Verification & Support
 Observe matching and 
timing from Booster. 
 Investigate whether losses 
for slip-stacking match those 
described in my analysis.

– Stable phases.
– Loss-rates. 

 Propose improvements.



Continuing the research program
 We numerically mapped the stable area as a function 
of a single parameter – the slip-stacking parameter α

s
.

 We could do the same sort of analysis including a 
second parameter that varies independently:

– A running bucket.
– A parameterization of direct space-charge.
– A different voltage for each RF cavity.
– A third RF cavity at the average frequency.
– A harmonic cavity for average or each frequency.
– A (synchrotron) cooling term.

 Make into jobs for a supercomputer to handle faster.
 Analytic work can handle more than two parameters.



Analysis of line distribution
 How does the slip-stacking process distort the 
distribution of particles in the bucket?

– How does it look projected onto the time axis?
 What really happens in the chaotic region between 
buckets? Is there anyway to make sense of that?
 There are a couple of ways to explore this:

– Direct simulation.
– Analysis of experimental data.
– Langrangian coherent structures.

 Applications:
– Make better sense of experimental data.
– Tomography program like TARDIS?
– Useful rf manipulations?



Thank you for listening!

...Any Questions?



Backup Slides



Small Oscillation Coefficients



Full Perturbative Solution



Fifth Harmonic Resonance



Sixth Harmonic Resonance



“Slipping” Phase-Space Trajectory



Emittance



Slip-stacking Parameter



Voltage



Momentum Usage



Principle Component Analysis (PCA) 

 Input N data series of the same length.
 Finds the covariance of each data series with each 
other data series.
 Diagonalizes the covariance matrix.
 This takes linear combinations of the series to make 
principle components - features of the data series 
which vary together.
 Components and coefficients used to assemble 
components can then be analyzed.



Numerical Analysis of Fundamental 
Frequencies (NAFF)
 Like a discrete Fourier transform, but continuous.
 Calculate inner product (covariance, convolution) of 
the data with a sine wave.
 Make a chart of the amplitude as a function of freq.
 Still limited in frequency resolution by the number of 
datapoints in the sample, but not as limited.



Langrangian Coherent Structures (LCS)
 A relatively new numerical technique designed to analyze 
turbulence in real-world problems.
 Organizes the phase-space by drawing trajectories (LCS 
strainlines) that have the property of either attracting or 
repeling nearby trajectories.

 
There are many features matching what we want:

– Unlike velocity fields which change in a rotating 
reference frame, LCSs are frame invariant.

– LCS has an unfixed parameter representing the time-
scale, we have a natural time-scale.





























































































































One simple idea would be something like this:

How To Accelerate Particles



But there would be no net acceleration:

How To Accelerate Particles



So don't do that:

How To Accelerate Particles



You need a time-dependent field for net acceleration:

How To Accelerate Particles



You need a time-dependent field for net acceleration:

How To Accelerate Particles
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